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external field 
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Cameroun 
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Abstract. We investigate the kink dynamics in a discrete Q4 chain with dissipation and extemal 
field. The kink, dressed and parametrized by its position XU). is introduced as a distinct degree 
of freedom in the discrete chain. By using the projection operator method with Dim's  sewnd 
class conshains., we show that the asymmevic kink motion is modulated by the Peierk-Nabarro 
(PN) force whose barrier is a decreasing function of the extemal field. It is also seen that the 
average value of the PN force is an increasing function of the external field. The dressing Of 
the kink profile is andysed numerically. It results in a considerable increase of the PN force 
amplitude. 

1. Introduction 

Fundamental studies have been carried out to analyse the behaviour of solitons in the 
presence of perturbations. These perturbations, currently encountered in physical systems, 
are of various sources: impurities, dissipation, external field (of mechanical, electric or 
magnetic nature) and noise. Their inclusion into non-linear lattice problems always leads to 
non-linear and intractable partial differential equations. To overcome the non-integrability of 
the resulting models and to analyse the perturbation effects on the structural and dynamical 
behaviour of solitons, various techniques have been elaborated [ 1-51. Each technique is 
dictated by the nature of the perturbations and the choice of parameters to analyse. In 
general, there appears a modulation of the structural and dynamical parameters such as 
velocity, mobility, soliton extension and amplitude or an interesting dynamical behaviour 
[S. 61. However, one can also observe a creation of new degrees of freedom. In some cases, 
the symmetry of the substrate potential of the lattice, and consequently that of solitons, can 
be completely modified. This is seen in a @04 chain with dissipation and constant extemal 
field, where there exists a stable asymmetric domain wall [7,20]. 

In some of these perturbed systems, the solitons are obtained after application of the 
continuum approximation to a set of discrete differential equations describing the movement 
of particles. This is the case in discrete lattices. When the soliton width is comparable to 
the lattice spacing, new phenomena can occur owing to discreteness effects. Therefore, 
one needs a mathematical formalism that takes the lattice effects into account. In ideal 
discrete lattices (without perturbations), some Hamiltonian formalisms have been used and 
interesting results obtained such as the energy loss to phonons and pinning effects [&19]. 
But, in real systems, we need a description of the discrete soliton motion that involves 
perturbations. The first studies on the subject were carried out numerically by Peyrard and 
Kruskal for the one-dimensional s indordon  model [ 141 and Pnevmatikos et al for the 
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model [20]. The effects of thermal fluctuations were analysed by Kaup and Osman [211. 
Recently, by using a variational principle, which includes the generalized forces (obtained 
from the principle of virtual work) associated with damping and driving force, Pouget et a1 
have shown that kink location in a three-dimensional lattice (discrete in one dimension) can 
be approximately described by a normalized damped4riven sineGordon equation [22]. 
These studies have been extended to incorporate localized impurities [23,24]. 

We pursue the study in this paper, where we give an analytic description of kink 
dynamics in a Q4 chain with dissipation and external field. The development follows 
a letter published recently by the authors 1251 where we neglected the effects of lattice 
discreteness on kink structure (the dressings). Here, we give a description of discrete kink 
motion in an asymmetric O4 lattice. We concentrate on the determination of the Peierls- 
Nabarro (PN) force, on the numerical analysis of the corrections of the kink profile and the 
resulting effects on kink generalized potential. The effects of the external field on the PN 
force and on the kink dressing are obtained. 

The organization of the paper is as follows. In section 2, w’e present the model and 
the resulting kink excitations. Section 3 deals with the mathematical formalism used to 
analyse the discrete kink dynamics. New dynamical variables are introduced: the position 
of the kink and the discrete corrections of the continuum soliton profile. The projection 
operator method is used to derive the equation of motion of the new variables. It is found 
that the asymmetric kink experiences the well known Peierls-Nabarro force, whose barrier 
is a decreasing function of external field. In section 4, a numerical analysis is performed 
to estimate the amplitude of dressing and its effects on the dynamical properties (the PN 
potential and frequency) of the discrete lattice. It is found that the inclusion of dressing 
increases the amplitude of the PN force. The last section is devoted to the conclusion. 

P Woofo and T C Kofont 

2. Model and kink soliton excitations 

We consider a monatomic chain of particles of mass m and equally spaced by the lattice 
constant b. Each particle is subjected to the anharmonic crystalline a4 potential, which has 
been extended to include an external constant field f’. The resulting on-site potential of the 
ith particle is therefore 

The parameters A (which is generally temperature-dependent) and B are assumed to be 
positive constants. The function y; is the displacement of the ith particle away from its 
mean position x i  = ih. The external force f may be due to a mechanical stress or to an 
electric field if we are in the presence of charged particles. In this latter case, the force f 
and the electric field E are related through the equation 

f = e ’ E  (2.2) 

where e* is the coupling constant or the effective charge of each particle. The nearest- 
neighbour particles are harmonically coupled with the elastic strain coefficient C, so that 
the Lagrangian of the lossless chain is defined as 
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The dot over yi (or the subscript t hereafter) stands for the derivative with respect to time 1. 
The extemal field applied uniformly to all particles adds to the aspmmetly of the substrate 
potential. Indeed, for an extemal field less than fman = (2 /3 ,6 )A3 'ZB-1 /Z ,  the potential 
(2.1) has two asymmetric stable equilibrium positions (see figure 1) defined as 

( Y A  = ~2/&yOcos((0/3) + ( 2 ~ ~ 3 ) )  ( Y ~ ) ~  = ( Z / , ~ ) Y ~ C O S ( B / ~ )  (2.4a) 

instead of the well known symmetric equilibrium sites yi = f y o  with yo = (A/B)'/'. The 
unstable equilibrium position is 

= @/&)YO CoS((0/3) + ( 4 ~ / 3 ) )  (2.4b) 

with 0 defined as 

cos0 = (3J?/2)(B'/2/A3/z) f. (2.44 

Figure 1. Suucrure of the chain of particles around the 
asymmetric kink wilh f > 0. 

Since we deal with a dissipative chain, we need a Lagrangian description that involves 
dissipation. This can be achieved by adding a viscous damping term to the equation of 
motion resulting from the Lagrangian (2.3). One can also extend the Lagrangian formalism 
to include a Rayleigh dissipative function, which provides a phenomenological description 
of the frictional force with a damping coefficient h. 

From the Lagrangian (2.3), the equation of motion for the ith particle is (considering 
the damping) 

myi + mAji - C(yi+l + yi-I - 2yi) - Ayi + By: - f = 0. (2.5) 
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This set of discrete differential equations (i covers all the particles) is analytically intractable. 
It constitutes the basis of the projection operator method [26],  which enables the analysis 
of kink dynamics in the discrete lattice (see section 3). In order to apply the projection 
method, one needs the kink solution of the continuum analogue of equation (2.5). This is 
obtained by replacing the discrete displacement yi(r) by the continuous displacement field 
y ( x .  t )  and the approximation 
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where the subscript x x  (and fr hereafter) denotes the second spatial (and time) derivatives 
of the field y ( x ,  t). Then equation (2.5) becomes 

my,, + m l y ,  - mCiyxr - Ay 4- By3 - f = 0 ( 2 6 )  

where CO' = C b Z / m  is the square of the speed of sound in the lattice. 

the well known Q4 equation [27] whose topological soliton solution is 
When there is no damping and no external field (l = f = O), equation (2.6) reduces to 

with the width L defined as 

L = [2m(C,2 - V z ) / A l ' / z  (2.8) 

where V is the constant velocity of kink (+) or antikink (-). The stability of this solution 
against small fluctuations has been established analytically [28] and numerically [29].  

The effect of an external field applied in a lattice exhibiting a static or uniformly moving 
kink (2.7) has been analysed [14,20,3&32]. The main results are that there appears an 
adjustment of particles on the new equilibrium positions (2.40). Since there is no damping 
(A = 0). the kink accelerates continuously until it becomes so narmw that the discreteness 
effects cannot be neglected. Then, it  starts emitting small-amplitude waves of specific 
frequencies. It thus reaches a limiting velocity V, (less than the sound velocity) for which 
there is balance between the energy gained from the external field and the energy lost due 
to radiation of lattice phonons. Quantitative studies have shown that the limiting velocity 
Vf evolves by steps: for a large range of applied forces, Vf remains almost constant and 
then jumps to another value where it is again constant for a new range of f (see 1141 for 
the sine-Gordon lattice and I321 for the 0' lattice). Similar interesting results have also 
been obtained in [381 for two-component solitary waves where the evolution of the velocity 
versus the accelerating field and the damping coefficient presents an abrupt discontinuity 
and hysteresis phenomena. 

When both the damping and the external field exist, equation (2.6) exhibits the bounded 
solution 

corresponding to asymmetric domain walls [7]  where 

(2.10) 
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defines the asymmetric kink width. The coefficients 4, and i72 are the e8peme zems of me 
polynomial 

P ( 4 )  = - r13 t f B1'24-3'2. (2.1 1) 

They are given by the relations 91 = Y I / Y O  and 02 = y z / y ~ ,  where y~ and y2 are defined 
in equation (2.4~).  Following [331, the constant velocity V ,  the damping coefficient )i gnd 
the coefficients 91 and 92 (i.e. the external field) are related . .  by the equation 

)iV[m/A(C,Z - Vz)l''z f(3/J2)43 (2.12) 

where 43 defined as 43 = - (VI  + 92) = y3/yo i s  the third zerq of the polynomial P ( 9 ) .  
Assuming the non-relativistic limit, i.e. V << CO (which corresponds to the case of a 

high damping coefficient or small extsmal field), . .  the soliton wid$ increases slightly with 
me force f (see figure 2). 

Figure Slight increase of the asymmetric kink widlh Figure 3. The average force Fa versus the external field 
f. K with the force f in the non-relativistic regime. 

3. Asymmetric kink dynamics in the discrete chain 

In this section, we are interested in the non-relativistic dynamics of the asymmetric kink 
(2.9) in the discrete chain. For this purpose, we consider the deconfposition of the discrete 
displaq-ement y,  in the following manner [25]:  

Y ,  = Y ; ( X ( t ) )  + *r (3.10) 

where the function y k ( X ( t ) )  given by 

(3.lb) 

defines the continuum kink at the cell i (xi = ib) of the lattice and the kink width has the 
nonvrelativistic form of equation (2.10), X ( r )  stands for the collective cpordingte or kink 
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coordinate whose time behaviour is yet to be determined. In the continuum limit, X(f) is 
proponional to time (e.g. X(1) = Vf,  see equation (2.9)). but this is not the case in the 
discrete. lattice, where the translational invariance of kink motion is broken by the periodic 
variation of kink parameters (see equation (3.4)).  

From the decomposition (3 . la) .  employed in field theory [34] ,  the kink is promoted 
to be a distinct degree of freedom through the collective coordinate X@). The + i ( f )  field 
accounts for the discrete correction or dressing of the first-order solution (3 . lb )  and for 
the radiated phonons emitted by the kink during its propagation. The introduction of the 
collective coordinate X ( t )  adds two more degrees of fieedom to the system corresponding to 
X(1) and its conjugate momentum. Therefore, we need two constraints in order to conserve 
the original number of degrees of freedom. The choice of constraints must satisfy a double 
requirement: it should lead to an adequate canonical transformation and conserve the state 
of the physical system [U, 351. The first constraint 
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minimizes the correction $! in the vicinity of the kink centre. The superscript (1) on yk 
denotes the derivative of yk with respect to X. The second constrainr which ensures a 
functional link between y:" and &, is defined as 

c* = n. 0. (3.26) 

It maintains the quadratic form of the kinetic energy of the system by eliminating the crass- 
terms between the soliton kinetic energy and the particle kinetic energies. These constraints, 
originally used in the continuous field variables [34] and recently in the discrete lattice [15], 
are known as the second class constraints in Dirac's terminology r34.351. To derive the 
equation of motion for the new variables @i. &, X and X ,  we will use the projection 
operator procedure [26] whose virtue is the ease with which the equations are derived 
relative to the amount of work needed in Dirac's formalism for constrained Hamiltonian 
dynamics [18 ,19] .  

In that way, let us introduce the transformation (3 . la )  into the basis equation (2.5). One 
obtains the equation of motion for the discrete correction +i as 

m$; + m i $ !  - c(Y;+' + YL-' - 2yk + +;+I+ $i-l - 2+i) - A ( Y ~  + + i )  + L V Y ~  + + i Y  

- f + + mhty ;"  + m p y ; z '  = 0, (3.3) 

In order to derive the equation of motion for the coordinate X, we 'project' equation (3.3) 
on y:". That is, we multiply equation (3.3) by y i l '  and then, taking the summation over 
all the particles, we make use of the constraining conditions to obtain 

(3.4) 

with 

( 3 . 5 4  
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standing for the kink mass and 

au/ax = Y;"[-c(Y;+~+Y;-~ - 2 ~ ; + q ~ + ~ + @ ~ - ~ - 2 q ~ ) - ~ ( ~ ; + q ~ ) + ~ ( g ~ + @ ~ ) ~ - f i  
(3.5b) 

is the partial derivative (with respect to X )  of the generalized potential energy of the discrete 
chain. The set of equations (3.3) and (3.4) show that the discrete correction @i is coupled to 
the collective coordinate X. The discreteness of the lattice gives rise to qi that adiabatically 
dress the profile (3.lb), as well as to radiated phonons when the kink is set in movement 
An accurate evaluation of the generalized force (3.5b) as functions of X and time, and 
consequently the time dependence of X(t) and X ( t ) ,  requires the determination of the 
discrete correction @;. We concentrate hereafter on the determination of the potential force 
aU/aX for a static asymmetric kink. We first neglect the correction q; (see hereafter in 
this section), and in section 4 we take into account the dressing of kink structure. 

In taking only the first-order approximation yi Y y i .  we use the Taylor expansion of 
yi" and yi-' to the fourth-order derivative, and considering the static form of equation (2.6), 
we obtain that equation (3.56) can take the form 

auiax = C y i 1 ) [ - c y i 2 )  -AY; + B ( & ) ~  - f - ( Z C / ~ ! ) Y ~ ~ " ]  (3.6) 

where the superscript (li) represents the Ith derivative of yk with respect to the discrete 
variable i .  The right-hand side of (3.6) is a periodic function of X with period b (the 
lattice spacing). The Fourier coefficient of the summation with the fourth order of the 
derivative can be easily obtained, but for the term containing the y i  function we have used 
the computation to approximate its value. Therefore the PN force has the following form: 

aU/aX = - E, sin(2nnXlb) + Fa (3.7a) 

with 

The term Fa is an average force depending on f .  It has been obtained numerically by 
inserting the function yi(X) into equation (3.6) for a chain of N = 200 particles. The 
results presented in figure 3 show that Fa is an increasing function o f f .  As it later appears 
in figure 7, Fa increases when one takes into account the dressing $;. 

One can also find that the kink mass (see equation (3.5~2)) has the following periodic 
structure: 

M = Ma + EMn cos(knX/b) (3.8a) 

with 

MO = m(yl - ~2)*/6bK (3.8b) 

and 

M" = 
3b2 sinh(2n2Kn/b) 

(3.8~) 
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Because of the presence of the hyperbolic sine function in the denominators of the Fourier 
coefficients, the contribution of second-order harmonics (or first-order ones for the mass) 
or higher can be neglected in comparison with the first-order one (pr the fundamental MO) 
(for instance, for K = 1.36, it is seen that E ~ / E I  2: 

The quantity E ~ N  = El/n gi be seen as the Peierls-Nabah potential amplitude (or 
barrier), which modqlates the motion of dislocation in crystals 1361. It depends, as well 
as the kink mass, on the external field f through the terms y ,  - n. This dependence is 
an interesting result for the dynamical propeffies of kinks and other topological excitations 
(such as domain walls and dislocations). Indeed, figures 4 and 5 show the variations of E ,  
and MO versus the external field. It is seen that the PN barrier decreases as the external 
field increases. This decrease is understandable if we hppeal to the fact that the kink length 
increases with f. Moreover, this behaviour can be related to the lowering of the substrate 
potential barrier and consequently to the increase of the kink qobility. 

P Woafo and T C Kofane 

FigUre 4. Barrier E l  x IO3 versus the cxlemal field f 
for dimensionlus paramelem A = B = 1 and C = I .  

Figure 5. Mass MO versus the field f for dimensionless 
parameters A = B = 1 and C = 1. 

As a result of equations (3.7). the velocity of an asymmetric kink has an oscillatory 
behaviour in the discrete lattice. With an insufficient kinetic energy, less than the PN barrier 
EPN,  the trapping of a kink can be observed. In this case. the kink oscillates about the 
bottom XI = ( k  f f)h of the PN potential (k  being an integer). The oscillatory frequency 
OPN defined as 

D ~ N  = ( ~ H E ~ / M O ) ” ~  (3.9) 

is also a decreasing function of external field f. 
When @i is not neglected, the full equation (3.3) of the discrete correction has to be 

analysed. In one-dimensional or coupled sineiGordon and Q4 discrete models, it has been 
shown that the @; field has important effects on the dynamical properties, such as the kink 
pinning frequency o p ~  and the depth of the PN potential [ l  I ,  16,191. The analysis of phonon 
effects associated with the $; field leads to a dissipative character for the kink motion in the 
discrete lattice [ 12,14,37]. Section 4 deals with the numerical analysis of the static form of 
equation (3.3). The effects of the dressing on the amplitude of the PN force are presented. 
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4. Numerid analysis of static dressing and its effects on the PN force 

The discrete corrections & in the static form satisfy the set of non-linear discrete equations 

- C(yk+’ + yk-’ - Zyk + *i+i  + $;-I - 211.i) - A(& + @ i )  + B(Y: + 11.i)’ - f = 0 

(4.1) 

which can be obtiined by minimizing the potential 

with respect to $, . Equation (4.1) describes the dressing for a kink located in one of the 
equilibrium sites of the PN potential. Assuming that the 11., fields are small enough to justify 
the linearization in equation (4.1). we qbtain the following matrix equation: 

AV=F (4.3) 

where V and F are column matrices defined respectively as 

and A is a nidiagonal matrix with matrix elements (A)ij given by 

(A)ij  = -C8i,j-i + [2C - A + 3B(yk)*ISi , j  - CGi-1.j. (4.5) 

For a kink situated at a non-equilibrium site of the PN potential, the analysis of dressing 
requires an extra force that holds the kiak and prevents it from etuming to the PN well. 
The required force can be generated from the Lagrange multiplier technique associated with 
constraint CI [16]. This is achieved by adding the constraint CI with an undetermined 
Lagrange multiplier a(X) to the original potential (4.2). so that the new potential has the 
form 

The procedure, also known as a quasistatic approach, introduces the restraining force 
that balances the PN force and maintains the kink in a non-equilibrium position. The 
minimization of the new potential (4.6) adds another inhomogeneous term to the right-hand 
side of equation (4.3), so that we have 

AV = F -a(X)Yg’ (4.71 

where Yg’ is a column matrix defined by 
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Solving equation (4.7) for a ( X )  leads to the expression 

(4.9) 

where A-’ is the inverse matrix of A and is the transpose of the column matrix 
Y:’. The dressing is then obtained by substituting equation (4.9) into equation (4.7). 

For the numerical calculation of the dressings, the solution of equations (4.3) and (4.7). 
we have considered a system of N particles with N = 200 and we have used the method 
presented in [ 191. The computations have been carried out for varying values of the external 
field. The following results have been obtained. 

We have observed that the maximum amplitude of the dressing decreases slightly when 
the force f increases; see figure 6 where the variations of the dressing versus the distance 
i - X have been plotted for two different values of the external field. This result can be 
justified by the fact that the kink extension in the non-relativistic regime increases with the 
force f, thus reducing the lattice effects. It has also been seen that is less than 
0.015. a small value that justifies the linearization operated on equation (4.1). The constraint 
C1 is satisfied since @; is an odd function of i - X while 

I l l  TA-IF[@~)  T ~ - l ~ ( l l  -1 
a(X) = (Y, ) K )  K I  

is an even function. 

i - X  

Figure 6. Variation of dressing as a function of the 
dismce i - X for f = 0.01 (full curve) and f = 0.2 
Woken cvwe). 

In figure 7. we have plotted, for f = 0.1. the PN force (obtained by numerical 
calculations for 200 lattice particles) versus X in two periods of the lattice. It appears 
that aU/aX is periodic as obtained in analytic discussions. The amplitude of the PN force 
is seen to increase considerably when one includes the dressing @ j  in calculating the PN 
force (compare the amplitude in figure 7(a) and that in figure 7(b)). Such behaviour due to 
the relaxations of the kink profile had earlier been obtained by Aubry [8]. 

5. Conclusion 

In this paper, we have studied the dynamics of kinks in a discrete O4 chain with dissipation 
and external field. After having reviewed the main topological soliton excitations in the 
continuum lattice, we have used the collective coordinate method in which the position 
X ( t )  of the kink centre appears as an unknown dynamical variable. In addition, owing to 
the discreteness, the continuum kink profile has been dressed by the discrete correction @i. 
The @i field takes into account the dressing of the kink profile and the phonons radiated 
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Figure 7. The Peieds-Nabam force W / a X  
versus X in two lattice spacings: (a )  without 
dressing and ( b )  wilh the conmibution of 
dressing for f = 0.1. 

by a propagating kink in the discrete lattice. Using two suitable constraining conditions, 
we have used the projection operator procedure to derive the equation of motion for the 
position X ( t ) .  It has been shown that the kink propagation is modulated by a periodic PN 
potential whose barrier height decreases when the external field increases while the average 
value increases. The decaying of the PN barrier has been explained as due to the fact that 
the external field lowers the barrier of the substrate potential and therefore increases the 
kink mobility. 

An equation for the discrete correction @i has been obtained. We have numerically 
studied its static form and it appears that the amplitude of the dressing decreases when 
the external field increases. These results are understandable since the kink extension 
(in the non-relativistic regime) increases with the external field, thus reducing the lattice 
effects. The inclusion of dressing effects considerably improves the accuracy in estimates 
of dynamical quantities such as the pinning frequency and the amplitude of the PN force. 

The results obtained in this paper can be used to discuss the diffusion of domain 
walls in ferroelectric materials such as SbSI and PbsGe301,. Moreover, the model can 
be used to describe proton diffusion in hydrogen-bonded materials (for example, in ice and 
in ferroelectrics such as KHzPOa) with, however, the inclusion of heavy-ion excitations (see 
138,391). 
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